Practice Tests Set 24 - Paper 2H-3H mark scheme

Practice Tests Set 24 - Paper 2H-3H mark scheme

| Qn | Working | Answer | Mark | | Notes |
| :---: | :--- | :---: | :---: | :---: | :---: | :--- | :--- |

Practice Tests Set 24 - Paper 2H-3H mark scheme

Qn	Working	Answer	Mark		Notes
3	1600×0.16 (= 256) oe or $1-0.16(=0.84)$ oe		4	M1	
	1600 - "256" or $1600 \times$ " 0.84 " ($=1344$)			M1	
	$\begin{aligned} & \frac{" 1344 "}{1400}(=0.96) \text { or } \frac{1400-" 1344 "}{1400}(=0.04) \text { or } \\ & \frac{" 1344 "}{1400} \times 100(=96) \text { or } \frac{1400-" 1344 "}{1400} \times 100 \end{aligned}$			M1	
	Correct answer scores full marks (unless from obvious incorrect working)	4		A1	SCB1 for 1856 seen if no other marks awarded
					Total 4 marks

Qn	Working	Answer	Mark	Notes	
4	eg $\pi \times 3^{2} \times 7$ ($=63 \pi$ or 197.9...)		3	M1	for method to find the volume of Solid A
	$\text { eg } \frac{2000}{[\operatorname{vol~A]}} \text { or } \frac{3375}{450}(=7.5 \text { oe }) \text { or } \frac{2000+3375}{[\operatorname{vol} \mathrm{~A}]+450}$			M1	(indep) for method to find the density of Solid \mathbf{A}, \mathbf{B} or \mathbf{C}, allow use of their volume for Solids \mathbf{A} and \mathbf{C}
	Correct answer scores full marks (unless from obvious incorrect working)	8.3		A1	accept 8.29-8.31
					Total 3 marks

Qn	Working	Answer	Mark		Notes
5 (a)	$\begin{aligned} & 2 \times 2 \times 2 \times 5 \times 5 \text { or } 2,2,2,5,5 \text { or } 2 \times 2 \times 3 \times 5 \times 7 \\ & \text { or } 2,2,3,5,7 \text { or } \mathrm{eg} \end{aligned}$		2	M1	for one number written as a product of prime factors or prime factors listed numbers may be at end of factor trees or on 'ladder diagrams' or in a table or in a Venn diagram or at least two factors for each (excluding 1, 200, 420)
	2 200 420 2 100				
	2 100 210				
	5				
	10 21				
	Correct answer scores full marks (unless from obvious incorrect working)	20		A1	or $2^{2} \times 5$ oe
(b)			2		for $2^{m} \times 3^{n} \times 5^{p} \times 7^{q} \times 11^{r}$ with at least three of $m=3, n=2, p=2, q=2, r=1$ (all 5 terms should be seen) or omission of one term with others fully correct OR prime factors seen in a Venn diagram if so must be fully correct
	Correct answer scores full marks (unless from obvious incorrect working)	$2^{3} \times 3^{2} \times 5^{2} \times 7^{2} \times 11$			allow 970200 oe
					Total 4 marks

Practice Tests Set 24 - Paper 2H-3H mark scheme

$\left.\begin{array}{|l|l|l|l|l|l|}\hline \text { Qn } & \text { Working } & \text { Answer } & \text { Mark } & \text { Notes } & \\ \hline \mathbf{6} & \begin{array}{l}390 \div(8-2)(=65) \text { or } \\ \frac{8}{15}-\frac{2}{15}=390 \text { or } \frac{8}{15} x-\frac{2}{15} x=390 \text { or } \\ \frac{6}{15}=390 \text { or } \frac{6}{15} x=390 \text { oe }\end{array} & & 3 & \text { M1 } & \begin{array}{l}\text { M2 for } \\ 390 \times 15\end{array} \\ \text { oe }\end{array}\right]$

Practice Tests Set 24 - Paper 2H-3H mark scheme

Practice Tests Set 24 - Paper 2H-3H mark scheme

Qn	Working	Answer	Mark	Notes	
8	$\text { eg } \frac{x+7}{80}=\frac{1}{4} \text { or } 4(x+7)=80 \text { or } x+7=20$		4	M1	for setting up a correct equation in terms of x only
	eg $x=80 \times \frac{1}{4}-7(=13)$ or $4 x+28=80$ and $x=\frac{80-28}{4}(=13)$ or $x=13$			M1	for a complete method to find the value of x or $x=13$. Award of this mark implies M2.
	$\begin{aligned} & \text { eg } 80-(" 13 "+7+" 13 "-11+3 \times " 13 ")(=19) \\ & \text { or } \frac{" 13 "+7+" 13 "-11+3 \times " 13 "}{80}\left(=\frac{61}{80}\right) \end{aligned}$			M1	for a method to find the number of yellow counters or $\mathrm{P}(\mathrm{R}$ or B or G$)$
	Correct answer scores full marks (unless from obvious incorrect working)	$\frac{19}{80}$		A1	oe eg accept 0.2375 or 23.75% or 0.237 or 23.7% or 0.238 or 23.8% or 0.24 or 24%
					Total 4 marks

Qn	Working	Answer	Mark		Notes
9			3	M1	For area of 2 different faces (ie not 2 triangles)
	$0.5 \times 4.8 \times 3.6(=8.64)$ oe or 4.8×3.6 if clear intention for this to be 2 triangles $\begin{aligned} & 7 \times 3.6(=25.2) \\ & 7 \times 4.8(=33.6) \\ & 7 \times 6(=42) \end{aligned}$ (all measurements with intention to add)			M1	For adding together 5 areas, at least 4 of which are correct NB: $(3.6+4.8+6) \times 7(=100.8)$ is 3 faces
	Correct answer scores full marks (unless from obvious incorrect working)	118		A1	118.1 or 118.08
					Total 3 marks

Practice Tests Set 24 - Paper 2H-3H mark scheme

Qn	Working	Answer		Mark
10	$\frac{1}{2} \times 7 \times h=42$ oe or $(h=) \frac{42 \times 2}{7}(=12)$ oe or $3.5^{2}+h^{2}=y^{2}$ or $h=\sqrt{y^{2}-3.5^{2}}$ oe		4	M1 A correct equation involving the height or a correct expression for height - could be in terms of y
	$y^{2}=\left(\frac{7}{2}\right)^{2}+(" 12 ")^{2}$ oe or $\frac{1}{2} \times 7 \times 1 / \sqrt{y^{2}-3.5^{2}} "=42$ oe			M1 (indep) use of their height (any found value that they have called 'height')
	$y=\sqrt{\left(\frac{7}{2}\right)^{2}+(" 12 ")^{2}}$ oe			M1 all values must come from a correct method
	Correct answer scores full marks (unless from obvious incorrect working)	12.5		A1 oe eg $\frac{25}{2}$
				Total 4 mark

Practice Tests Set 24 - Paper 2H-3H mark scheme

Qn	Working	Answer	Mark	Notes	
11 (a)		7, 17, 32, 64, 80	1	B1	values seen in table
(b)			2	M1ft	for at least 4 points plotted correctly at end of interval or for all points plotted consistently within each interval of the associated frequency table (eg at 5, 15, 25, $35,45$ or $0,10,20,30,40)$ at the correct height. ft their table dep on one error only in the table
	(NB: a 'bar chart' type graph scores zero marks)	correct cf graph			All points plotted correctly at end of interval (tolerance 1 small square - there is an overlay) and joined with a curve or line segments accept curve that is not joined at $(0,0)$.
(c)	Accept a single value in the range OR ft their cf graph	33	1	B1ft	Accept a single value in range $32-34$ or ft their cf graph
(d)	NB: readings are 21-23 and 37-39 (but for this M1 these do not have to be correct if correct working is shown - eg lines or marks indicating use of CF 20 (or 20.25) and CF 60 (or 60.75) with an indication on the Time axis at the correct points (or they can just show the correct readings))		2	M1ft	For correct use of LQ and UQ and subtraction, ft from a cum freq graph provided method is shown - eg a line horizontally to the graph from readings of CF 20 and CF 60 to meet the graph and then a vertical line to the Time axis(even if wrongly read scale) or clear marks on the graph and Time axis that correspond to the correct readings or correct values from the Time axis
	Accept a single value in the range OR ft their of graph	16		A1ft	Accept a single value in range 15 to 17 or ft from their cumulative frequency graph provided method is shown eg subtraction of values that would be correct for their graph
					Total 6 marks

Practice Tests Set 24 - Paper 2H-3H mark scheme

Qn	Working	Answer	Mark	Notes
$\mathbf{1 2}$	$\frac{0.515}{6.25}$		2	M1For either bound correct (used or seen)
	Working required	0.0824		A1 dep on M1 Allow $\frac{103}{1250}$

Qn	Working	Answer	Mark	Notes
$\mathbf{1 3}$		Fully correct angle bisector with all relevant arcs shown	2	B2for a fully correct angle bisector with all relevant arcs shown
		If not B2 then B1 for all arcs and no angle bisector drawn or for a correct angle bisector within the guidelines but no correct arcs or insufficient correct arcs		

Practice Tests Set 24 - Paper 2H-3H mark scheme

Qn	Working	Answer	$\begin{array}{c\|} \hline \text { Mark } \\ \hline 4 \end{array}$		Notes	
14	$\begin{aligned} & S C D=128^{\circ} \text { or } B C S=32^{\circ} \\ & \text { or } T S C=180-128(=52) \end{aligned}$			M1	angles need to be identified or may be seen marked on the diagram	M2 for $(B C D=) 128+32(=$ 160) or $(D C V=) 52-$ 32 ($=20$) (may be seen marked on the diagram). To award these marks 160 or 20 must be clearly used or identified as the interior or exterior angle.
	$\begin{array}{\|l} \hline \text { eg }(\mathrm{int} \angle=) 128+32(=160) \\ \text { or }(\operatorname{ext} \angle=) 180-(128+32)(=20) \\ \text { or }(\mathrm{ext} \angle=) " 52 "-32(=20) \end{array}$			M1	(dep on previous M1) for method to find the size of one interior or exterior angle, may be seen marked on the diagram.	
	eg $180(n-2)=" 160 " n$ or $360 \div$ " 20 "			M1 $\begin{aligned} & \text { for setting up an equation for the sum of interior } \\ & \text { angles or } 360 \div \text { " } 20 \text { " }\end{aligned}$		
	Working required	18		A1 dep on M2		
						Total 4 marks

Practice Tests Set 24 - Paper 2H-3H mark scheme

Qn	Working	Answer	$\frac{\text { Mark }}{4}$	Notes	
15	$\begin{aligned} & (A D=) \frac{2.2}{\tan 18}(=6.77 \ldots) \text { or } \\ & (E A=) \frac{2.2}{\sin 18}(=7.11 \ldots) \end{aligned}$		4	M1	a correct method to find $A D$ or $A E$
	$\begin{aligned} & (D B=) \sqrt{(" 6.77 \ldots)^{2}+6^{2}}(=9.04 \ldots) \text { or } \\ & (E B=) \sqrt{6^{2}+7.11 \ldots{ }^{\prime 2}}(=9.31 \ldots) \text { or } \\ & (E B=) \sqrt{6^{2}+4.77 \ldots{ }^{\prime 2}+2.2^{2}}(=9.31 \ldots) \end{aligned}$			M1	a correct method to find $D B$ or $E B$
	$\begin{aligned} & \tan D B E=\frac{2.2}{49.04 \ldots "} \text { or } \\ & \sin D B E=\frac{2.2}{49.31 \ldots "} \text { or } \sin D B E=\frac{2.2 \sin 90}{" 9.31 \ldots "} \\ & \cos D B E=\frac{" 9.04 \ldots "}{49.31 \ldots "} \text { or use of cosine rule } \end{aligned}$			M1	complete method to find one of $\tan D B E$ or $\sin D B E$ or $\cos D B E-$ NB: if using cosine, the student will need to have found $D B$ and $E B$ previously
	Correct answer scores full marks (unless from obvious incorrect working)	13.7		A1	Allow answers in range 13.59 13.8
					Total 4 marks

Practice Tests Set 24 - Paper 2H-3H mark scheme

ALTERNATIVE Q16 mark scheme (using values for L and W)

Practice Tests Set 24 - Paper 2H-3H mark scheme

Qn	Workking	Answer		Mark	
17	$12=\frac{1}{2} \times 4.6 \times 8.3 \times \sin A B C \text { or } \frac{4.6 h}{2}=12 \quad(h=5.217 \ldots .)$			M1	a correct equation for the area to find angle $A B C$ or to find the perpendicular height of the triangle.
	$\begin{aligned} & A B C=\sin ^{-1}\left(\frac{12}{\frac{1}{2} \times 4.6 \times 8.3}\right)(=38.947 \ldots) \text { oe or } \\ & A B C=\sin ^{-1}(0.6286)(=38.947 \ldots) \text { or } \\ & A B C=\sin ^{-1}\left(\frac{" 5.217 \ldots{ }^{\prime}}{8.3}\right)(=38.947 \ldots) \text { or } \\ & B M^{2}=8.3^{2}-" 5.217 \ldots . .2 \end{aligned}$			M1	A correct method to find angle $A B C$ or a correct method to find $B M^{2}$ where $C M B$ is 90°
	$A C^{2}=4.6^{2}+8.3^{2}-2 \times 4.6 \times 8.3 \times \cos (\text { " } 38.947 ") \quad\left[\text { allow } \cos 39^{\circ}\right]$ or $A C^{2}=30.6(627 \ldots)$ $B M=\sqrt{8.3^{2}-" 5.217 \ldots . .{ }^{2}}(=6.455 \ldots)$			M1	a correct start to the cosine rule to find length $A C$ or a fully correct method for $B M$
	or $A C=\sqrt{" 30.6(6 \ldots) "}$ or 5.5(3739...)			A1	A correct value for $A C$ which can be the square root of $30.6(6 \ldots)$
	Correct answer scores full marks (unless from obvious incorrect working)	18.4		A1	Allow answers in range 18.4 to 18.45
					Total 5 marks

Practice Tests Set 24 - Paper 2H-3H mark scheme

Practice Tests Set 24 - Paper 2H-3H mark scheme

Qn	Working	Answer	Mark	Notes
19	$\sqrt{\frac{3600}{625}}$ or $\frac{12}{5}$ oe or 2.4 or $12: 5$ oe or $\sqrt{\frac{625}{3600}}$ or $\frac{5}{12}$ oe or $0.416 \ldots$ or $5: 12$ oe or $\frac{3600^{3}}{625^{3}}=\frac{(\text { vol of statue })^{2}}{750^{2}}$ oe or $\frac{3600}{625}=\frac{(\text { vol of statue })^{\frac{2}{3}}}{750^{\frac{2}{3}}}$ oe		3	M1 for a correct length scale factor or a correct length ratio or setting up a correct equation involving the volume of the statue
	eg $750 \times\left(" \frac{12}{5}{ }^{\prime}\right)^{3}$ oe or $750 \div\left(" \frac{5}{12} "\right)^{3}$ oe or $\sqrt{\frac{3600^{3} \times 750^{2}}{625^{3}}}$ oe or $\left(\frac{3600 \times 750^{\frac{2}{3}}}{625}\right)^{\frac{3}{2}}$ oe			M1 (dep on M1) for a correct method to work out the volume of the statue
	Correct answer scores full marks (unless from obvious incorrect working)	10368		A1 cao
				Total 3 marks

Practice Tests Set 24 - Paper 2H-3H mark scheme

Qn	Working	Answer	Mark		Notes
20 (a)	11-2		2		2 and 11 clearly identified either in list or stated
	Working required	9			dep on M1
(b) (i)		Kim as she has a higher median	1		oe, ft their median if value given Acceptable examples Kim as she has a higher median Kim as/because her median is $11 \mathrm{and} / \mathrm{but} /$ whereas Rutger's is 8 Kim's median is 3 more (than Rutger's) Kim as Rutger's median is 3 less Not acceptable examples Kim's median is 11 and Rutger's is 8 Kim as she has a higher median and a lower IQR
(ii)		Kim as she has a smaller IQR	1	B1	oe, ft their part (a) Acceptable examples Kim as she has a smaller IQR Kim as/because her IQR is $5 \mathrm{and} / \mathrm{but} /$ whereas Rutger's is 9 Kim's IQR is 4 less (than Rutger's) Kim as Rutger's IQR is 4 more Not acceptable examples Kim's IQR is 5 and Rutger's is 9 Kim as she has a higher median and a lower IQR
					Total 4 marks

Practice Tests Set 24 - Paper 2H-3H mark scheme

Qn	Working	Answer	Mark		Notes
21	($\angle A O C=) 132 \times 2(=264)$		3		for method to find angle at the centre. Do not award this mark if contradicted on the diagram eg if obtuse $A O C$ is labelled as 264
eg $\frac{" 264 "}{360} \times 2 \times \pi \times 8.5\left(=39.1 \ldots\right.$ or $\left.\frac{187}{15} \pi\right)$ or $2 \times \pi \times 8.5-\frac{360-" 264 "}{360} \times 2 \times \pi \times 8.5\left(=39.1 \ldots\right.$ or $\left.\frac{187}{15} \pi\right)$ or $\frac{" 264 "}{360} \times 2 \times \pi \times 8.5+2 \times 8.5$ or $2 \times \pi \times 8.5-\frac{360-" 264 "}{360} \times 2 \times \pi \times 8.5+2 \times 8.5$				M1	for a method to find the length of $\operatorname{arc} A C$ or perimeter of the sector - allow use of their $A O C$ as long as clearly labelled
	Correct answer scores full marks (unless from obvious incorrect working)	56.2			accept $56.1-56.2$
					Total 3 marks

					Edexcel averages: scores of candidates who achieved grade:								
Qn	Skill tested	Mean score	Max score	$\begin{array}{\|l\|} \hline \text { Mean } \\ \% \end{array}$	ALL	9	8	7	6	5	4	3	U
1	Statistical measures	2.35	3	78	2.35	2.97	2.84	2.68	2.41	1.61	0.91	0.23	0.07
2	Percentages	4.78	6	80	4.78	5.91	5.55	5.32	4.80	3.61	2.43	1.16	0.40
3	Percentages	3.16	4	79	3.16	3.83	3.65	3.35	2.87	2.60	2.16	1.60	0.63
4	Measures	2.25	3	75	2.25	2.89	2.64	2.51	2.17	1.53	1.04	0.64	0.19
5	Powers and roots	2.88	4	72	2.88	3.78	3.38	3.03	2.42	1.99	1.47	0.00	0.00
6	Ratio and proportion	2.18	3	73	2.18	2.96	2.68	2.23	2.04	1.50	0.87	0.31	0.10
7	Statistical measures	3.36	5	67	3.36	4.71	4.26	3.63	2.62	1.85	1.23	0.00	0.00
8	Probability	2.74	4	69	2.74	3.81	3.49	2.87	2.41	1.47	0.96	0.36	0.09
9	3D shapes and volume	2.07	3	69	2.07	2.75	2.53	2.14	1.95	1.35	0.98	0.34	0.28
10	Trigonometry and Pythagoras' Theorem	2.62	4	66	2.62	3.59	3.08	2.79	2.44	1.61	1.23	0.62	0.24
11	Graphical representation of data	4.06	6	68	4.06	5.64	4.96	4.15	3.14	2.74	1.83	0.00	0.00
12	Degree of accuracy	1.22	2	61	1.22	1.87	1.66	1.23	0.88	0.55	0.19	0.08	0.02
13	Construction	1.19	2	60	1.19	1.76	1.38	1.20	0.96	0.71	0.43	0.16	0.01
14	Angles, lines and triangles	2.35	4	59	2.35	3.78	3.00	2.22	1.54	0.93	0.52	0.19	0.03
15	3D shapes and volume	2.24	4	56	2.24	3.81	3.14	2.21	1.12	0.60	0.12	0.03	0.06
16	Percentages	1.51	3	50	1.51	2.43	1.84	1.63	1.03	0.56	0.16	0.01	0.00
17	Mensuration of 2D shapes	2.54	5	51	2.54	4.38	3.44	2.45	1.39	0.54	0.27	0.12	0.02
18	Graphical representation of data	2.60	5	52	2.60	4.28	3.38	2.33	1.49	0.99	0.58	0.00	0.00
19	Similarity	1.55	3	52	1.55	2.74	2.18	1.30	0.78	0.30	0.07	0.04	0.00
20	Statistical measures	1.95	4	49	1.95	3.27	2.43	1.66	1.17	0.91	0.41	0.00	0.00
21	Mensuration of 2D shapes	1.17	3	39	1.17	2.13	1.42	1.03	0.58	0.36	0.05	0.03	0.01
	TOTAL	50.77	80	63	50.77	73.29	62.93	51.96	40.21	28.31	17.91	5.92	2.15

Suggested grade boundaries

Grade	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$
Mark	68	57	46	34	23	18	4

